翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

High altitude nuclear explosion : ウィキペディア英語版
High-altitude nuclear explosion

High-altitude nuclear explosions (HANE) have historically been nuclear explosions which take place above altitudes of 30 km, still inside the Earth's atmosphere. Such explosions have been tests of nuclear weapons, used to determine the effects of the blast and radiation in the exoatmospheric environment. The highest was at an altitude of 540 km (335.5 mi).
The only nations to detonate nuclear weapons in outer space are the United States and the Soviet Union. The U.S. program began in 1958 with the ''Hardtack Teak'' and ''Hardtack Orange'' shots, both 3.8 megatons. These warheads were initially carried on Redstone rockets. Later tests were delivered by Thor missiles for Operation Fishbowl tests, and modified Lockheed X-17 missiles for the Argus tests. The purpose of the shots was to determine both feasibility of nuclear weapons as an anti-ballistic missile defense, as well as a means to defeat satellites and manned orbiting vehicles in space.
High-altitude nuclear blasts produce significantly different effects. In the lower reaches of vacuous space, the resulting fireball grows much larger and faster than it does near the ground, and the radiation it emits travels much farther.
==EMP generation==
The strong electromagnetic pulse (EMP) that results has several components. In the first few tens of nanoseconds, about a tenth of a percent of the weapon yield appears as powerful gamma rays with energies of one to three mega-electron volts (MeV, a unit of energy). The gamma rays penetrate the atmosphere and collide with air molecules, depositing their energy to produce huge quantities of positive ions and recoil electrons (also known as Compton electrons). The impacts create MeV-energy Compton electrons that then accelerate and spiral along the Earth's magnetic field lines. The resulting transient electric fields and currents that arise generate electromagnetic emissions in the radio frequency range of 15 to 250 megahertz (MHz, or one million cycles per second). This high-altitude EMP occurs between 30 and 50 kilometers (18 and 31 miles) above the Earth's surface.
The potential as an anti-satellite weapon became apparent in August 1958 during ''Hardtack Teak''. The EMP observed at the Apia Observatory at Samoa was four times more powerful than any created by solar storms, while in July 1962 the ''Starfish Prime'' test damaged electronics in Honolulu and New Zealand (approximately 1,300 kilometers away), fused 300 street lights on Oahu (Hawaii), set off about 100 burglar alarms, and caused the failure of a microwave repeating station on Kauai, which cut off the sturdy telephone system from the other Hawaiian islands. The radius for an effective satellite kill for the various prompt radiations produced by such a nuclear weapon in space was determined to be roughly 80 km. Further testing to this end was carried out, and embodied in a Department of Defense program, ''Program 437''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「High-altitude nuclear explosion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.